Agda学习笔记1( 二 )

+assoc' y x (x * y) 换成 sym ( +assoc y x (x * y) )
乘法结合律精简的证明:
*-assoc : (x y z : ?) → (x * y) * z ≡ x * (y * z)*-assoc zero y z = refl*-assoc (suc x) y z rewrite *distribr y (x * y) z | *-assoc x y z = refl一些比较大小n≮n : (n : ?) → n < n ≡ falsen≮n zero = refln≮n (suc x) = n≮n x-- problem 2.2<-antisym : (x y : ?) → x < y ≡ true → y < x ≡ false<-antisym zero (suc y) p1 = refl<-antisym (suc x) (suc y) = <-antisym x y -- problem 2.3<-trichotomy : (x y : ?) → x < y ∨ x =? y ∨ y < x ≡ true<-trichotomy zero zero = refl<-trichotomy zero (suc y) = refl<-trichotomy (suc x) zero = refl<-trichotomy (suc x) (suc y) = <-trichotomy x y【Agda学习笔记1】

推荐阅读